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AbslracL The presence of many attractors in neural nelwork give rise lo interesting 
competitive phenomena. In this paper we consider dilute recurrent (or attractor) neural 
networks with signconstrained weights and storing uncomelated patterns with maximal 
stability. The dynamics of these network is governed by the competitive effects of 

encroaching, shrinking, splitting and wedging. We have found the parameter regions in 
which each of these attractors exist. The basins of attraction of lhe uniform attractors 
enlarge at the expense of the other sttractors wen when the weight signs are slightly 
imbalanced, but can be compensated by the introduction of a dynamical threshold. 

re!rieva!, non-rP!rieva! and unifnrm !i.e. cePrrnmagne!t) a!!nC!nlx, which mu!! in hasin 

1. Introduction 

The purpose of this paper is twofold. First, we study the dynamical properties of 
attractor neural network with sign-constrained weights. Secondly, using the sign- 
constrained network as a particular example, we demonstrate that the presence of 
many attractors in neural networks can give rise to interesting competitive attractor 
anu iranbicnt uenaviuurs. 

Neural networks with sign-constrained weights are of interest for biological, tech- 
nological and cognitive reasons. Biological synapses are either excitatory or inhibitory, 
and the nature of a synapse is believed to be unchanging [1,2]. These features can 
be modelled with sign-constrained weights. 

They are also of interest in the construction of neural hardware. The existence 
of both positive and negative weights in the electronic and optical implementation of 
neural networks increases the complexity of the circuit. In both cases a solution is to 
use sign-constrained neural networh (either with all positive weights and a threshold 
[3] or  all negative weights [4,5]). 

Furthermore, the enforcement of weight sign constraints can give rise to an ex- 
ploitable cognitive feature-namely an ability to distinguish between the  recognition 
or non-recognition of an input pattern [6,7!. I f  excitatory synapses are more nu- 
merous than inhibitoly ones, an initial input distant from a stored pattern will drift 
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towards a uniform state, in which all the neurons are firing (or non-firing) simulta- 
neously. Moreover, if the weight sign imbalance is sufficiently large, only retrieml 
and uniform attractors are stable. The uniform attractor states can therefore be re- 
garded as the attractors for unrecognized inputs, and can be readily distinguished 
from retrieval attractors. 

Following the above motivations, we have formulated a learning algorithm for 
perceptrons with sign-constrained weights [SI. This algorithm is guaranteed to con- 
verge provided that a solution exists. Furthermore, for uncorrelated patterns, we have 
found that the storage capacity of this perceptmn is always half that of the corre- 
sponding unconstrained perceptron, irrespective of the distribution of weight signs 
[9]. This independence from the weight sign distribution is an example of gauge 
invariance. It is interesting to explore to what extent the dynamics of recurrent (or 
attractor) networb is also gauge invariant. 

In this paper we will extend this study by considering the dynamics of attractor 
neural networks with sign-constrained weights. In general, the calculation of the 
dynamics of neural networks is an intractable problem, because correlations between 
different time steps cannot be neglected. As the system evolves, the number of 
correlation parameters grows substantially. Here we shall focus on the solvable case 
of dilute networks, in which each neuron is fed by C other neurons with 1 < In C 
In  N, so that correlations beyond one time step are negligible [lo]. We will consider 
the conditions for the existence of attractors, the size of the basins of attraction, the 
transient behaviour which determines the approach to the fvted points, and the extent 
of gauge invariance in the dynamics of these models. Preliminary results have already 
been presented in Ill]. 

It turns out that three types of attractors are possible: retrieval state (Le. the 
attractor configuration is a stored pattem), non-retrieval state (i.e. no correlation 
W U U  L,,G 3LUIG" parLcrtD), U, U l l l l U l l l l  > L I I L C  (I.C. a11 1 5  U1 a11 --I 5 5llllullallcuusly). 

On varying the storage level and the weight sign bias, the attracting power of these 
attractors changes, giving rise to complex competitive effects. There exist parameter 
regions which favour one attractor over the others. The favoured attractor then has 
a wide basin of attraction at the expense of the others. In some parameter regions, 
they may even encroach on their neighbouring basins. The transient approach to 
these attractors is also affected by the competition between attractors. As a result, a 
basin of attraction may be further divided into valleys under the influence of a strong 
neighbouring attractor, accompanied by bifurcations of saddle points and repellers 
along their adjoining basin boundaries. 

h f a c t ,  this picture of competitive attraction is present in any dynamical system 
possessing many attractors. Attractor neural networks with weight sign constraints 
are a particular example exhibiting these effects, but they should also be present in 
other attractor neural networks. For example, similar features have been observed in 
a related sign-constrained model [12], the two pattern network [13] and a thresholded 
asymmetric model [14]. 

As we shall see, a very small weight sign bias, of the order O(C-''2) (C being 
the connectivity of a neuron), is sufficient to enlarge the basin of the uniform attractor 
disproportionately. Weight sign biases of the order O( 1 )  cause the retrieval attractors 
to narrow their basins drastically, which is an undesirable feature in most neural 
network implementations. This also shows that the gauge invariance for the static 
storage of pattems is no longer upheld in the network dynamics. 

One way of compensating the effect of the uniform attractors is to introduce a 

... :>I_ .I_̂ ".---_I .."..--..", -- __..:I^__ ̂.̂ .̂  I : ^  ^I, 4." _ _  - 3 1  4.- -:.-..a.---....-,..\ 
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dynamical threshold to each neuron. The dynamical threshold restrains the average 
firing rate so that the state does not move towards the uniform states. Interestingly, 
gauge invariance can be restored to the network dynamics by the use of dynamical 
thresholds. 

We present the dynamical equations in section 2. The conditions governing the 
stability of the fixed points and saddle points, and hence the existence of the attractom, 
are discussed in section 3. In section 4 we will describe the geometry of the attractor 
basins and their accompanying transient behaviours, and the phase diagram of the 
dynamical behaviour in the space of the storage level and weight sign bias. In 
section 5 we discuss the issue of gauge symmetry in network dynamics, and the 
effects of introducing a dynamical threshold. In section 6 we summarize and discuss 
the implications of our study. 

2. Dynamical equations 

Consider a randomly diluted asymmetric neural network, in which the neuronal state 
at node i ( i  = 1 , .  . . , N) takes the possible values +l, and is fed by C other nodes 
j = i,, . , . , i, through the synapses Jij. The weight sign constraints can be enforced 
by requiring Jijgij 2 0 where gij = fl .  The subcase gij = gj corresponds to en- 
forcing the same sign on all the synapses emanating from each individual neuron. The 
dynamics of an attractor neural network can be either synchronous or asynchronous. 
For synchronous dynamics, all the neuronal states are updated according to 

while for asynchronous dynamics, a neuron is randomly chosen at each time step and 
its state updated acccording to (2.1). 

We will consider the network storing p random and unbiased patterns {Q} ( f i  = 
1 , .  . . , p). We are interested in the dynamical evolution of a state configuration not 
only having a macroscopic overlap m' with a stored pattern (say pattern 1) but also 
having an overlap Q' with a uniform state (Si = +1 for all i, say). The two relevant 
dynamical variables are therefore the overlaps with {.$I and with the positive uniform 
state (i.e. the activity), respectively given by 

i.e. m i  are the overlaps on those neurons having = f l  respectively ( N ,  are 
the number of neurons for which .$ = 51). Since we have assumed that the stored 
patterns have independent components and a random distribution, m' and ut are 
related to mi by 



2230 

The dynamical equations can be obtained by generalizing the single variable iterative 
equation for dilute networks [U, 16,171. For state configurations with a macroscopic 
overlap with pattern 1, it has been shown that the dynamical equation is com- 
pletely determined by the distribution of the aligning fields At.  Analogously, in the 
present problem with two dynamical variables m i ,  the dynamics is determined by 
the joint distribution of the two aligning fields 

K Y M Wong and C Campbell 

where C;l, is the number of neurons feeding neuron i for which tj  = f l ,  and is 
equal to C/2 in the limit C >> 1. They satisfy the equations 

where Mi E C-'/2 Cj J i j  can be considered as the aligning field of the uniform 
state. For input overlaps m i ,  the local field a t  neuron i is a sum of two Gaussian 
variables, of means m i  Jijt:/&?and variance [1-(mi)2]C,$/C. Hence 
inc uyrrar~r~ur equations arc -1- _I :--, .-- 

synchronous dynamics : 
asynchronous dynamics: d m i / d t  = f*(m:,mk) - m* (2.7) 

mi+' = f+ ( my, my ) 

where f+ are the retrieval functions 

and the double field distribution is defined by 

(2.9) 

where the overbar represents averaging over the fraction of weight space which StOreS 
the patterns and complies with the sign constraints, and the angular brackets repre- 
sent averaging over the stored patterns. Alternatively, the retrieval functions can be 
expressed in terms of a' and mt  

(2.10) mA f a M  
2(1  - m2 - 4 2 )  

f * ( a , m )  = dAdMp(A,M)erf  J 
where the joint distribution of A and M is defined by 

p ( h , i ; f )  = (qt, - A ; ) s ( M  - Mi)). (2.11) 

We note immediately that the dynamical equations are invariant under the trans- 
formations a -+ -a and m - -m. This implies that the dynamical behaviour is 
symmetric with respect to the a and 711 axes (i.e. RI = 0 and a = 0 respectively). 
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For networks with no bias in the weight sign distribution (i.e. the number Of 
positive and negative synapses feeding a neuron are the same), M = 0. In this 
case, the dynamical equation (2.7) is identical to the single parameter equation in 
[a, 16,171 for a' = 0. 

However, the most interesting case is for networks with a bias in the sign distri- 
bution given byt 

(2.12) 1 B = - 9.. for all i 
%.E . 'J 

J 

i.e. the fractional weight imbalance is of the order O(C-'/'). This implies 
M - 0(1), and the attracting power of the retrieval and uniform states become 
comparable. 

The above dynamical formulation is completely general, and applies to any synap- 
tic prescription. Here we are interested in the maximally stable network [SI, for 
which all aligning fields are bounded below by a positive stability parameter K ,  which 
is related t o  the storage level 01 G p / C  by [9] 

(2.13) 

provided that a is less than the storage capacity a, = 1. For this network, the 
distribution of M is a delta function peaked at @ J d J P ( J ) J ,  where the weight 
distribution P( -I) for the sign-constrained network was derived in [9], and is given 
by a truncated Gaussian of width 2 plus a delta functionf 

(2.14) e x p ( - J 2 / 4 )  1 
-b 26(J )  dG P( J) = O ( , t J )  

for excitatory and inhibitory synapses respectively. This gives 

B M = -  
J;; 

(2.15) 

and the joint weight distribution p( A ,  M) is now 

p ( A , M )  = p ( A ) 6  (2.16) 

where the aligning field distribution p ( A )  is given by a truncated Gaussian plus a 
delta function peak [15,17] 

p ( ~ )  = S(A - K ) ~ ~ ~ ( - ~ ~ / ~ )  + ;[I +e r f (n / f i ) ]6 (A  - n) .  (2.17) 6 
Substituting (2.16) in (2.10), the retrieval functions become, 

m A i a M  
2( 1 - m* - a') 

f * ( a , m )  = dAp(A)erf J (2.18) 

_ .  'ins is our centrai resuit. its consequences for tne attracior structure wiii be studied 
in the following sections. 

t We have mistakenly written down the wmng scaling in Ill]. 
$ We have mistakenly missed out 1he delta funclion pan in [g] 
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3. Attradnr and transient 

K Y M Wong and C Campbell 

3.1. Afrmctors and rheir stability 

For a < 1 these dynamical equations possess three types of attractor: (i) relrievol 
mracrors (a ,m)  = ( 0 , f l ) ;  (ii) uniform aftrmrurs (a ,m)  = (k1,O); (iii) non- 
refrieval offracfurs ( a ,  m)  = (0,O). The stability of these attractors are determined 
by the eigenvalues of the matrix ag*/am, where g*(m+,m-) a f*(m +,m-) -  
m* = 0. For a stable attractor the two eigenvalues must both be negative. We 
find that the retrieval attractors are always stable below the storage capacity and 
the uniform attractors are stable for positive non-zero B. On the other hand the 
non-retrieval attractor is a stable tixed point for a 2 a' = 0.21, and for B positive, 
M < or B < B' = 2.22. a' is half the corresponding value for unconstrained 
networks [Yj, the difference arising from the weight sign constraints. 

3.2. Saddle points and their stabiliry 

It is also interesting to consider the stability of saddle points which determine the 
character of transient behaviour. Particularly informative are the a and m saddle 
points lying on the a and m axes. The a saddle point is located a t  (a ,  m) = ( a * ,  0), 
where a' is the unstable k e d  point of the equation 

It merges with the non-retrieval attractor point when a* becomes zero for B 2 B'. 
It turns into an unstable tixed point (or a repeller) at low storage levels when 

dAp(A)A > 1. e x p [ - a ' ? M 2 / 2 ( 1  - a")] 
2 

J2.(1 -a.?) 

The m saddle point is locatkd at ( a , m )  = (O,m'), where m. is the unstable 
fixed point of the equation 

It merges with the non-retrieval attractor point when m* becomes zero for a < a*. 
It turns into a repeller a t  high weight sign bias when 

exp[ -m"A2/2 (1  - n~* ' ) ]  
2 M  dAp(A) > 1  J J2rr( 1 - m . 2 )  

(3.3) 

The regions of stability of the tixed points and saddle points are shown in figure 1. 
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1 0.21 1.0 

m 

Pigure 1. Kegions of stability of fixed poinu and saddle p i n u ,  and phase diagram in 
the space of storage level 01 and weight sign bias B. See section 4 for the names of 
the phases. The retrieval and uniform attracton are stable in all regions, while the 
non-retrieval attractor i s  only stable in region TA. The a saddle point exisls in regions 
wR1 and TA, but turns into a repeller in region WRZ. n e  m saddle point misu in 
regions wul and TA, but turns into a repeller in region wu2. 

Figure 2. The basin boundaly and transient boundaries for 01 = 0.3 and B = 0. In  
figures 2 4 ,  we have restricled the figures to the fin1 quadrant (since the other quadrants 
are symmetrically similar). The  labels R, U and NR represent the retrieval, uniform and 
non-retrieval fixed points respectively. T h e  arrows on the diagrams show lhe direction of 
movement in the parameter space. Basin boundaries are platted in solid lines, attractor 
lines in thin lines, transient boundaries d m l d t  = 0 in dashed lines, and d a l d t  = 0 
in dolled lines. 

4. Basins of attraction and transient behaviour 

The shape and location of the basin boundary lines may depend on whether we 
are considering attractors for synchronous or asynchronous dynamics. However, we 
have observed no significant difference between the two types of dynamics in the 
cases of positive B we studied. In figures 2 and 3 we plot the basin boundaries for 
asynchronous dynamics. Moreover, we have plotted the (unique) aiiractor lines which 
emanate from a saddle point and converge to an attractor. All flow lines in the basin 
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NR U 

R R 

Flgure 3. The basin baundaly, attractor lines and transient boundaries for (01 ,  E) = ( a )  
(0.15. 2.5); ( b )  (0.25, 3.0); ( e )  (0.15, 2.0); ( d )  (0.25, 2.5); (e) (0.15, 1.8); (f) (0.25, 2.0). 
These are examples of regions DU, wu2, wn2, wul, W R l  and TA in figure 1 mpectivcly. 
(The ordering in layout corresponds to the relative positions in figure 1.) 
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Figure 4. Effects of changing 01 and B on the sin boundary tween the retrieval 
and uniform allraclom in lhe regions of non-axial attraction. The segments of the basin 
boundaries plotted here slan from the axial-repeller and end at the non-axial saddle 
p int .  Starling from the left, ( a ) B  = 2.0 and 01 = 0.15,0.12,0.09; (b)B = 2.5 and 
01 = 0.20,0.18,0.15; ( e ) - =  0.25 and B = 4.0,3.5,3.0. 

of attraction tend to approach one of these attractor lines on their flow towards the 
attractor point. 

We have also plotted boundaries of transient behaviour. The dashed and dotted 
lines represent the curves d m /  d t  = 0 and da/ d t  = 0 respectively. In both syn- 
chronous and asynchronous dynamics, they demarcate four types of transient states: 
(i) retrieval transients-m' increases and a' decreases; (ii) non-retrieval transients- 
both m' and a' decrease; (iii) uniform fransients-m' decreases and a' increases; 
(iv) active transients-both m' and at  increase. Normally, the behaviour near the 
retrieval, non-retrieval and uniform attractor states (where they exist) are retrieval, 
non-retrieval and uniform transients respectively. However, in the vicinity of their 
basin boundaries, other transients are usually present. 

There exist points of intersection of the basin boundaries and transient boundaries. 
Since basin boundaries meet the a and m axes at saddle points or repellers, the 
conditions d a / d t  = 0 and d m / d t  = 0 must be satisfied at the intersections. Thus 
these meeting points also lie on the transient boundaries. 

Furthermore, there are regions of the parameter space (namely regions DU, wu2 
and m 2  in figure 1, see figures 3(a)-(c)) where the two boundaries of transience 
d a /  d t  = 0 and d m /  d t  = 0 meet. In these cases, their meeting point is another 
saddle point lying off the axes of symmetry, and we have a confluence of the transient 
and basin boundaries. 

4.1. Zero weight bias 

When B = 0 and a < a* any state with a small (positive) macroscopic overlap with 
the stored pattern will inevitably move towards the retrieval fixed point since this is 

For a > a* a non-retrieval attractor appears, as illustrated in figure 2. In the 
neighbourhood of the r e t r i ed  and non-relrieval states respectively, retrieval and non- 
retrieval transients are present. In addition, there exist regions of retrieval transients 
outside the basin of the retrieval attractor, i.e. there is a small transient increase in mt 

the an!" n t t n r t n r  present (!he an!y tra&Cn!s present :re. rPtrie%! transie!!tsj 
I "I..--.-. I' 
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before moving towards the non-retrieval state. The region of retrieval transients may 
be disconnected in two for higher values of a (figure 2), one in the neighbourhood 
of the uniform fured point, and the other in the vicinity of the retrieval attractor. 
Alternatively, it may be connected for lower a. 

4.2. Busin encroaching and shrinking 

For positive E the different regions of attractor and transient behaviour are illustrated 
in figure 1, and the dynamical evolution of each region are shown in figures 3(Q)-(f). 
The transition between these different behaviours can be interpreted as the result of 
competing attraction of the retrieval and uniform attractors. 

In general, the attracting power of an attractor depends on two factors: the storage 
level d and weight bias E .  Low a favours the retrieval attractor, since the aligning 
fields of the stored pattern is strong, and high B favours the uniform attractor. When 
an attractor is favoured, its basin of attraction widens at the expense of the others, 
resulting in the shrinking, or  even the disappearing, of the weaker attracton. 

For high a and low B, both the retrieval and uniform attractors are not exceed- 
ingly strong, allowing for the presence of the non-retrieval attractor. This corresponds 
to the triple atlractor region (TA). For the particular example in figure 3(f), there are 
regions of non-retrieval transiena lying within the basin boundaries of the retrieval 
and uniform attractors. States in these regions undergo an initial small movement 
away from the attractor before entering the retrieval or uniform transient regions 
surrounding the attractors. This shows that the non-retrieval attractor is sufficiently 
strong, influencing not only the flow within its own basin, but also that in its neigh- 
bouring basins. 

For low CI and low B, the retrieval attractor is favoured and encroaches on the 
non-retrieval attractor. This corresponds to the wide retrieval region (-1 and -2), 
where both the retrieval and uniform attractors are stable, but the retrieval attractor 
has a wider basin of attraction, which includes the whole positive m axis and part of 
the a axis (Figure 3(c, e)). Similarly, for high a and high B, the uniform attractor is 
favoured in the wide uniform region (wul and W U ~ ) ,  as shown in figure 3(b, d). 

For low a and high B, both the retrieval and uniform attractors are strong, 
corresponding to the duopo& region (DU). As shown in figure 3(a), both the retrieval 
and uniform attractors have wide basins of attraction along their respective axes. 

4.3. Basin splitting 

In regions WR~, w u 1  and TA, no repellers are present on the basin boundaries. 
The axes of symmetry, which connect the saddle and attractor points, are therefore 
attractor lines. The uniform and retrieval basins can then be considered as a single 
valley. The active transient is absent, though the other three types of transient3 occur. 
These regions can be described as regions of axial atrraction. 

In regions WR2, wu2 and DU, repellen are present on the basin boundaries. 
Saddle points, and hence the attractor lines, are located off the axes of symmetry. 
The repeller lies on an axis of symmetry, which can therefore can be considered as 
a valley bounday separating two valleys. When all quadrants of the variable space 
are taken into account, basins of attraction are further divided into valleys, each 
associated with an attractor line. All transients are possible. These regions will be 
called regions of non-aria1 aftracrion. 
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We interpret the transition from axial to non-axial attraction, and the accompany- 
ing splitting of the basins of attraction into valleys, as a result of the uneven attracting 
power of the competing attractors in the state configuration space. Because of the 
symmetry of the dynamical equation (2.18), the dynamical behaviour along the a axis 
is independent of the aligning field distribution, and hence independent of a; it is 
entirely determined by the weight bias. Similarly, the dynamical behaviour along the 
m axis is entirely independent of the weight bias. On the other hand, the dynamical 
behaviour otf the zxc.s of syymmetq dcpends nn the attiictino e nnWPr r---- of bot!! the 
retrieval and uniform attractors. 

In the wide retrieval region, for example, consider the transition from the single 
valley regime ( w R ~ )  to the multi-valley one (wR~) .  For a < a*, the retrieval attractor 
is generally strong, whereas the uniform attractor is strongest along the a axis, since 
the dynamics along this axis is independent of a. When B increases, the uniform 
basin expands along the a axis, pushing the saddle point to a lower value of a*. 
However, in the neighbourhwd of this point, the attracting power of the uniform 
attractor rapidly weakens when one moves away from the axis. Thus for sufficiently 
large B, the a saddle point turns into a repeller, accompanied by a saddle point 
bifurcating from it. 

Alternatively, this picture of competing attraction can be described in terms of 
a landscape analogy. This is useful although strictly speaking, the flow cannot be 
described as the gradient of a potential function, since it is not irrotational (i.e. 
am/& # Oa/am). If we associate a potential barrier with the basin boundary, 
then the increasing strength of the retrieval attractor off the a axis tends to lower t h e  
barrier at the non-axial region. When the potential at a non-axial point on the barrier 
becomes lower than that at the a saddle point, the a saddle point turns into a local 
maximum, while the saddle point shifts to a non-axial position. The axial attractor 
line turns into a valley boundary, and the narrower uniform basin divides into two 
valleys, whereas the wider retrieval basin divides into three. 

Using similar arguments, the transition between WR1 and WR2 can also be 
achieved by decreasing a at constant B. Furthermore, the transition between wl 
and wu2 is analogous, except that the roles played by the retrieval and uniform 
attractors are reversed. 

4.4. Basin wedging 
There is still another competitive effect when an axial saddle point turns into a 
repeller. Since the dynamical equations are symmetric with respect to the a and m 
axes, the basin boundaries should also meet the axes at the same inclination on both 
sides of the axes of symmetry. In particular, when the basin boundaries intersect the 
axes of symmetry at a saddle point, they should be normal to each other. This is 
because the only two flow directions that can pass through a saddle point lie along 
the eigenvectors of the stability matrix, which are normal at this point of symmetry. 

However, when the axial saddle point turns into a repeller, the basin boundary is 
not necessarily normal to the axes of symmetry, since the dynamic Row can emanate 
from the repeller in all directions. The angle of intersection depends on the relative 
attracting powers of the neighbouring attractors sharing the basin boundary. 

Figure 4 demonstrates the effects of varying a and E in the three regions of 
non-axial attraction. For example, in the WR2 region in figure 4(a), the retrieval at- 
tractor is increasingly favoured when a or B decreases. The basin boundary becomes 
increasingly inclined in favour of the retried basin, squeezing the uniform attractor 
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into a narrow wedged shape. The behaviour in the wu2 region is analogous in fig- 
ure 4(b), except that the role of the retrieval and uniform attractors are reversed. The 
same explanation applies to the duopoly region in figure 4(c), in which the wedged 
shape basin is the uniform basin for low B, but the retrieval basin for high B. 

4.5. Negative weight bias 

In contrast to the case of positive B. the behaviours of synchronous and asynchronous 
"p"aL",g a,= yuuc U111G,G,111 LUI "CgaL'*C U. I U 1  Jy"~L"u""u" upuarrrtg WG >GG L L M L  

if B + -B then f+ and f- in (2.18) are interchanged. Consequently the uniform 
state ( a ,m)  = (f1,O) will be a cyclic attractor of period 2 giving states of all l's 
and all -1's at each alternative time step. The approach to this attractor will involve 
oscillations about the m axis. The retrieval and non-retrieval attractors still exist 
as in the case of positive weight bias B ,  but the approaches to attractors will also 
involve oscillations about the m axis. Apart from this oscillatory behaviour the plots 
for synchronous updating are identical to their positive B counterparts. Thus there 
are no non-retrieval attractors for B < -8' and a > a'. 

For negative B and asynchronous updating the uniform attractors disappear. Thus 
only the retrieval and non-retrieval attractors exist and the non-retrieval state is stable 
even for B 6 -B*. It is interesting to compare the dynamics of networks with weight 
biases &B. The dynamical equations (2.6) imply that at the state ( mt, m-) ,  

K Y M Wong and C Campbell 
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which in turn implies that h( B) = h( - E )  and a( B) + a(-B)  + 2a = 0. Hence 
the boundaries of transience dm/  d t  = 0 are identical for the two networks, whereas 
the boundaries da /  d t  = 0 are in general different. 

5. Gauge symmetry and dynamical thresholds 

There is an important difference between the static storage and the dynamical retrieval 
of patterns, namely the issue of gauge invariance. If we are merely interested in 
whether a sign-constrained neural network stabilizes a pattern in one time step when 
the correcf pattern is presented, then it has been argued [9) that the storage capacity 
of the network is the same for all combination of weight signs, provided that the 
stored patterns are random and unbiased. This gauge invariance property is the 
consequence of the following simple argument. If the weight sign of a synapse J i j  is 
flipped, the network would have the same storage capacity if the p pattern hits (7 are 
all flipped. Since [7 are random and unbiased, and -[: have the same probability 
of occurence in the original pattern ensemble. Hence the patternaveraged storage 
capacity is not modified by the flipping of weight signs. 

In fact this perceptron storage property also extends to the case of biased patterns. 
Suppose we consider the case of biased input patterns { E ? } ,  with mean activity a, 
mapped onto output patterns, { C P ) .  Furthermore, suppose that the condition for the 
stability of stored patterns is modified to {+ Ci Ji(c' -.)/e > K ,  then although 
the microscopic gauge invariant argument for inbilasdd patterns does not hold, there 
is nevertheless a sfatislical gauge invariant argument which ensures that the Storage 
capacity is independent of the weight bias. This is because when we flip the Sign of 
a weight J j ,  the network would have the same storage capacity if the p quantities 
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(cy - a )  also flip their signs. Now although -(o - a) does not have the same 
microsopic distribution of (Ef - a), they nevertheless have the same statistical mean 
(i.e. zero) and variance (i.e. 1 - a2),  which are the only significant quantities in 
determining the extent of pattern interference in the thermodynamic limit. 

The microscopic gauge invariance argument continues to hold for the dynamics 
of unbiased patterns provided that the initial input state is restricted to unbiased 
configurations, i.e. a' = 0. This is evident from the dynamical equation (2.6), which 
is independent of the weight bias A4 for a' = 0. However, it does not hold when 
the input states are biased. Indeed, our study has demonstrated that the attractor 
structure and phase diagrams depend on the weight sign bias. We have seen that the 
uniform attractor becomes significant for a very small fractional weight sign imbalance, 
of the order O(C-' /2) .  For fractional weight sign imbalances of the order 0(1), 
the retrieval basin possesses a repeller on the axis, and has an extremely thin wedged 
shape; _.._ Variati~n2 with a sma!! a&$ ?..ay f r ~ m  the. m && q i d ! y  drive the system 
towards the uniform attractom - potentially a very undesirable feature of the network. 

In fact, it is possible to compensate for this instability against fluctuations in the 
activity by introducing a dynamical threshold in the updating function of each neuron. 
This dynamical threshold restrains the averaged activity so that it does not approach 
one of the uniform states. It also restores a statistical gauge invariance similar to that 
for the static storage of biased patterns outlined above. Dynamical thresholds have 
also been proposed in optical neural networb (31. 

The dynamical threshold can be introduced by subtracting Xat from each Sj in 
the updating function, i.e. 

where ar 3 N-'  Cj  Sj is the instantaneous activity of the network and the quantity 
Xa' E, J j , / &  can be considered as the dynamical threshold. As a consequence 
the retrieval functions (2.18) are now modified to 

f * ( a ,  m) = dAp(A)erf J (5.1) 

By putting X = 1, we see that the network dynamics becomes independent of 
M ;  of the weieht bias B: restorins the statistical sause invariance to the network 
dynamics. The uniform attractors are entirely eliminated (and the dynamics becomes 
similar to that outlined in section 4.1). 

In general, for an arbitraly value of A, the dynamically thresholded network 
has an effective weight bias of M (  1 - A).  Thus by suitably adjusting the value of 
A, it is possible to shift the attractor structure of the network to different regions 
of behaviour in figure 1 for constant a. For example, if the network initially lies in 
region TA, it is possible to suppress the spurious non-retrieval attractor by introducing 
a sufficiently negative A, so that only retrieval and uniform attractors are present This 
enables Shinomoto's cognitive feature (61, which was mentioned in section 1, to be 
implemented for a much wider range of the weight sign bias. 
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6. Discussion 

We have found three types of attractors in dilute networks with a bias in the weight- 
signs: retrieval, non-retrieval and uniform attractors. The properties of these at- 
tractors, their basin sizes and stability are the competitive result of two macroscopic 
factors: the storage ratio a and weight bias B.  This results in the six regions of 
attractor and transient behaviours in figure 1, which can be described in terms of 

each other. 
Interestingly, this picture of competitive attractor behaviour is also present in the 

retrieval of two patterns each having variable aligning field strengths [13]. In fact if 
we consider, in our case, the uniform state as one of stored patterns with = +I, 
then M = E, J i , / @  is exactly the aligning field for this uniform pattern. The 
only difference between our network and the two-pattern network in [13] is that the 
aligning field distribution for the stored pattern is not a delta function; otherwise the 
two systems have identical dynamical equations. Furthermore, their flow diagrams 
(figure l ( a ) - ( d )  in [13]) are similar to figures 3(a), (c). (e) and (f)  respectively, and 
their phase diagram (figure 3 in 1131) corresponds to figure 1 if we take into account 
the fact that a decreases with increasing average aligning field. 

Another example of competitive effects is present in the model with an asymmetric 
Hebbian rule [14]: There the attracting power of the attractors depend on the storage 
level a and the threshold H (instead of the weight bias), and the basins of attraction 
can be adjusted by tuning these two parameters. 

More generally, we believe that similar competitive effects are present in any 
dynamical system with multiple attractors. In particular, models of attractor neural 
network associate each stored pattern with an attractor. Consequently, phases of 
competitive attractor behaviours can be mapped out as the relative strengths of the 
attractors are varied. 

We have also found interesting transient behaviour. The normal behaviour within 
the retrieval and uniform basins are retrieval and uniform transients respectively. 
However, there exist non-retrieval transients in the vicinity of the basin boundary 
alongside this normal behaviour, i.e. the m or a component of the network state first 

is absent in the dynamics of network states with one component, is most marked 
for states off the axes of symmetry. It is observed in all regions of figure 1 except 
part of the triple attractor region. In the triple attractor region, the interplay of the 
attractors result in a rich transient behaviour, which will be reported elsewhere [18]. 
When the two attractor strengths are stongly imbalanced, active transients (i.e. the a 
component increasing) also exist in the vicinity of the basin boundary in the regions 
of non-axial attraction. 

These transient behaviours are again manifestations of the competition between 
the attractors. Strong attractors are not only able to capture large regions of network 
state within their own basin, but they are also able to modify the transient evolution 
of network states in their neighbouring basins. 

Our model can be easily generalized to the case of perceptron networks with a 
fraction of sign-constrained weights [19,20]. If s is the fraction of weights which are 
unconstrained, we arrive at the same retrieval functions (2.18), except that a and M 
have to be replaced by a/( 1 + s) and M (  1 - s)/- respectively. The attractor 
structure can therefore be obtained by an appropriate rescaling of the axes in figure 1. 

MSh encroaching9 shrinking, sp!itting and wedging a the attractors compete with 

E,OV& a-way from :he fseG point eveiirG;)y appiaaching h. 2 ,k  
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The presence of unconstrained weights reduces the aligning field of the uniform State. 
In the limit s + 1, the network becomes completely unconstrained, and the uniform 
attractor becomes destabilized. 

Finally, we comment on the biological relevance of neural network models with 
sign-constrained weights. There appears to he no evidence that individual synapsa 
can switch from one type to the other on any timescale. The subcase Jij,gj 2 0 
corresponds to the same sign constraint for all the efferent synapses belonging to a 
neuron (i.e. each neuron would be solely excitatory or inhibitoly in its effect). This 
functional unity of individual neurons is similar to Dale's rule [Z]. For many neuronal 
cells such a functional unity appears t o  be correct. A specific neurotransmitter is 
released (either excitatory, such as glutamate or aspartate, or inhibitory such as 
GABA) with a common effect on all follower cells. However, there are exceptions.to 
this picture. Firstly, neuronal cells exist which release multiple transmitters (among 
invertebrates such neurons have been identified in Aplysia and there is also some 
evidence for these neurons among vertebrates). Secondly, the sign of a synapse is 
not determined by the transmitter but by the propenies of the receptors on the 
postsynaptic cell [ZO] and there exist neurotransmitters which could have different 
excitatoly or inhibitory effects on the postsynaptic cells. Consequently, though a 
functional unity (either excitatory or inhibitory) is a common feature of most neurom 
it is not true in complete generality. 

Nevertheless, our study of the dynamical properties of sign-constrained networks 
is still biologically relevant in a number of ways. Our analysis only assumes that the 
synapsesfeeding a neuron obey a particular distribution of weight signs. The results 
are independent of any weight sign dependence of the transmitting neurons. Besides, 
inhibitov interneurons I221 play an important role in the brain and their effects on 
other neurons could be modelled as alterations of thresholds. It is possible that 
this mechanism could be related to the dynamical thresholds we have discussed in 
section 5. Finally, the attractor structures we have found are still present in a rescaled 
phase diagram even if the synapses are only partially sign-constrained, showing that 
such features are quite universal. 
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