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Abstract. The presence of many attractors in neural networks give rise to interesting
competitive phenomena. In this paper we consider dilute recurrent {or atiractor} neural
networks with sign-constrained weights and storing uncorrelated patterns with maximal
stability. The dynamics of these networks is governed by the competitive effects of
retrieval, non-retrieval and uniform (i.e. ferromagnetic) attractors, which result in basin
encroaching, shrinking, splitting and wedging, We have found the parameter regions in
which each of these attractors exist. The basins of attraction of the uniform attraciors
enlarge at the expense of the other attractors even when the weight signs are slightly
imbalanced, but can be compensated by the introduction of a dynamical threshold.

1. Introduction

The purpose of this paper is twofold. First, we study the dynamical properties of
attractor newural netwotks with sign-constrained weights. Secondly, using the sign-
constrained network as a particular example, we demonstrate that the presence of
many attractors in neural networks can give rise to interesting competitive attractor
and transient behaviours.

Neural networks with sign-constrained weights are of interest for biological, tech-
nological and cognitive reasons. Biological synapses are cither excitatory or inhibitory,
and the nature of a synapse is believed to be unchanging [1,2]. These features can
be modeiled with sign-constrained weights.

They are also of interest in the construction of neural hardware. The existence
of both positive and negative weights in the electronic and optical implementation of
neural networks increases the complexity of the circuit. In both cases a solution is to
use sign-constrained neural networks (either with all positive weights and a threshold
[3] or all negative weights [4, 5]).

Furthermore, the enforcement of weight sign constraints can give rise to an ex-
ploitable cognitive feature—namely an ability to distinguish between the recognition
or non-recognition of an input pattern {6,7]. If excitatory synapses are more nu-
merous than inhibitory ones, an initial input distant from a stored pattern will drift
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towards a uniform state, in which all the neurons are firing (or non-firing) simulta-
neously. Moreover, if the weight sign imbalance is sufficiently large, only retrieval
and uniform attractors are stable. The uniform attractor states can therefore be re-
garded as the attractors for unrecognized inputs, and can be readily distinguished
from retrieval attractors.

Following the above motivations, we have formulated a learning algorithm for
perceptrons with sign-constrained weights [8]. This algorithm is guaranteed to con-
verge provided that a solution exists. Furthermore, for uncorrelated patterns, we have
found that the storage capacity of this perceptron is always half that of the corre-
sponding unconstrained perceptron, irrespective of the distribution of weight signs
[9] This independence from the weight sign distribution is an example of gauge
invariance. It is interesting to explore to what extent the dynamics of recurrent (or
attractor) networks is also gauge invariant.

In this paper we will extend this study by considering the dynamics of attractor
neural networks with sign-constrained weights. In general, the calculation of the
dynamics of neural networks is an intractable problem, because correlations between
different time steps cannot be neglected. As the system evolves, the number of
correlation parameters grows substantially. Here we shall focus on the solvable case
of dilute networks, in which each neuron is fed by C' other neurons with 1 < ln C &«
In N, so that correlations beyond one time step are negligible [10]. We will consider
the conditions for the existence of attractors, the size of the basins of attraction, the
transient behaviour which determines the approach to the fixed points, and the extent
of gauge invariance in the dynamics of these models. Preliminary results have already
been presented in [11].

It turns out that three types of attractors are possible: retrieval state (ie. the
attractor configuration is a stored pattern), non-retrieval state (ie no correlation
with the stored patieris), of uniform state (ie. all 1’s or ail —1's simultancously).
On varying the storage level and the weight sign bias, the attracting power of these
attractors changes, giving rise to complex competitive effects. There exist parameter
regions which favour one attractor over the others. The favoured attractor then has
a wide basin of attraction at the expense of the others. In some parameter regions,
they may even encroach on their neighbouring basins. The transient approach to
these attractors is also affected by the competition between attractors. As a result, a
basin of attraction may be further divided into valleys under the influence of a strong
neighbouring attractor, accompanied by bifurcations of saddle points and repellers
along their adjoining basin boundaries.

In fact, this picture of competitive attraction is present in any dynamical system
possessing many attractors. Attractor neural networks with weight sign constraints
arc a particular example exhibiting these effects, but they should also be present in
other attractor neural networks. For example, similar features have been observed in
a related sign-constrained model [12), the two pattern network [13] and a thresholded
asymmetric model [14).

As we shall see, a very small weight sign bias, of the order O(C~!/2) (C being
the connectivity of a neuron), is sufficient to enlarge the basin of the uniform attractor
disproportionately. Weight sign biases of the order O(1) cause the retrieval attractors
to narrow their basins drastically, which is an undesirable feature in most neural
network implementations. This also shows that the gauge invariance for the static
storage of patterns is no longer upheld in the network dynamics.

One way of compensating the effect of the uniform attractors is to introduce a
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dynamical threshold to each neuron. The dynamical threshold restrains the average
firing rate so that the state does not move towards the uniform states. Interestingly,
gauge invariance can be restored to the network dynamics by the use of dynamical
thresholds. .

We present the dynamical equations in section 2. The conditions governing the
stability of the fixed points and saddle points, and hence the existence of the attractors,
are discussed in section 3. In section 4 we will describe the geometry of the attractor
basins and their accompanying transient behaviours, and the phase diagram of the
dynamical behaviour in the space of the storage level and weight sign bias. In
section 5 we discuss the issue of gauge symmetry in network dynamics, and the
effects of introducing a dynamical threshold. In section 6 we summarize and discuss
the implications of our study.

2. Dynamical equations

Consider a randomly diluted asymmetric neural network, in which the neuronal state
atnode ¢ (¢ =1,..., N) takes the possible values +1, and is fed by C other nodes
j =44,...,1, through the synapses J;,. The weight sign constraints can be enforced
by requiring J;;g;; > 0 where g;; = +1. The subcase g,; = g, corresponds to €n-
forcing the same sign on all the synapses emanating from each individual neuron. The
dynamics of an attractor neural network can be either synchronous or asynchronous.
For synchronous dynamics, all the neuronal states are updated according to

St = spn(h}) he = —%Z.}‘j S (2.1)
7

while for asynchronous dynamics, a neuron is randomly chosen at each time step and
its state updated acccording to (2.1).

We will consider the network storing p random and unbiased patterns {¢!'} (u =
1,...,p). We are interested in the dynamical evolution of a state configuration not
only having a macroscopic overlap m* with a stored pattern (say pattern 1) but also
having an overlap o' with a uniform state (S; = +1 for all 7, say). The two relevant
dynamical variables are therefore the overlaps with {£} } and with the positive uniform
state (i.e. the activity), respectively given by

m'=N"'S "¢l s at=N"'>" st (2.2)

. WL T

Equivalently, the dynamics can be described by

mi = N3' Y. ¢St (2.3)
{il€i=21)

ie. mY are the overlaps on those neurons having ¢! = 1 respectively (IV, are
the number of neurons for which £! = £1). Since we have assumed that the stored
patterns have independent components and a random distribution, m' and a® are
related to mi by

t

m' = I(m} +m!) at = 3(m?

-m!). (2.4)

T



2230 K'Y M Wong and C Campbell

The dynamical equations can be obtained by generalizing the single variable iterative
equation for dilute networks [15,16,17). For state configurations with a macroscopic
overlap m* with pattern 1, it has been shown that the dynamical equation is com-
pletely determined by the distribution of the aligning fields A}l. Analogously, in the
present problem with two dynamical variables m, the dynamics is determined by
the joint distribution of the two aligning fields

. £l S
it = S Jge (2.5)
Cly (1g=41)

where C} {4 1S the number of neurons feeding neuron ¢ for which E’ +1, and is
equal to C/2 in the limit C > 1. They satisfy the equations

1 1 1 1 _ 4l. 1 1 1 1 _ gl

'\/‘-;A.H_ + 7§Ai— - A,‘-, —\/_EA'-+ - EA;_ - Ei M
where M; = C~/257. J;. can be considered as the aligning field of the uniform
state. For input overlaps m}, the local field at neuron 7 is a sum of two Gaussian
variables, of means m} Ze —a1 i€ /v/C and variance [1 —(m%)?| C}, /C. Hence

the Uy[ldllllbdl t:qud[lUl'lb daIc

(26)

synchronous dynamics : mit! = f,(mf,m')

asynchronous dynamics : dmi/dt = fo(ml mi)-my (27)

where f, are the retrieval functions

fa(my,m_) = fdA+dA_P¢(A+,A_)erf (m+"‘+"/§+ "‘-"-"/5) 2.8)

\/2(1 ~m2 /2 — m2 [2)

and the double field distribution is defined by

pi(A+,A_) = <‘5(A+ - A}+)'§(A_ - A}—)){}:tl (2'9)

where the overbar represents averaging over the fraction of weight space which stores
the patterns and complies with the sign constraints, and the angular brackets repre-
sent averaging over the stored patterns. Alternatively, the retrieval functions can be
expressed in terms of a* and m'

mA +alM
) = [ dAdMp(A, M)erf | —————————= 2.10
where the joint distribution of A and M is defined by
p(A, M) = {6(A - A )6(M - M,)). (2.11)

We note immediately that the dynamical equations are invariant under the trans-
formations @ — -a and m — —m. This implies that the dynamical behaviour is
symmetric with respect to the a and m axes {i.c. m = 0 and a = 0 respectively).
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For networks with no bias in the weight sign distribution (ie. the number of
positive and negative synapses feeding a neuron are the same), M = 0. In this
case, the dynamical equation (2.7) is identical to the single parameter equation in
[15,16,17] for a' = 0.

However, the most interesting case is for networks with a bias in the sign distri-
bution given byt

B= % Z,: g,  foralli 2.12)

ie, the fractional weight imbalance is of the order O(C~'/?). This implies
M ~ O(1), and the attracting power of the retrieval and uniform states become
comparable.

The above dynamical formulation is completely general, and applies to any synap-
tic prescription. Here we are intercsted in the maximally stable network [8], for
which all aligning fields are bounded below by a positive stability parameter «, which
is related to the storage level o = p/C by [9]

1 todt —t3/2

2a - /;oo A4 2 © (K'
provided that o is less than the storage capacity o, = 1. For this network, the
distribution of M is a delta function peaked at v'C [ dJ P(J).J, where the weight

distribution P(J) for the sign-constrained network was derived in [9], and is given
by a truncated Gaussian of width 2 plus a delta function}

exp(—J%/4) 1

- t)? (2.13)

P{J)y=0(xJ =6(J 214
(9 = O =F = + 56(0) (214)
for excitatory and inhibitory synapses respectively. This gives
B
M= 7= (2.15)
and the joint weight distribution o(A, M) is now
, B
= M- — .
o(A, M) p(A)a( =) 2.16)

where the aligning field distribution p(A) is given by a truncated Gaussian plus a
delta function peak [15,17]

exp(—A?/2) 1

p(A) = 8(A = &) + Z[1 +erf(x/V2))6(A — k). (2.17)

V2 2
Substituting (2.16) in (2.10), the retrieval functions become,
mA +alM
a,m) = [ dAap(A)erf . 2.18
fala,m)= [dap(a) (\/Q(l_mhaz)) (218)

This is our centrai resuit. Its consequences for the attractor structure wiil be studied
in the following sections.

t We have mistakenly written down the wrong scaling in {111
1 We have mistakenly missed out the delta function part in [9].
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3. Attractor and transient

3.1. Auractors and their stability

For o < 1 these dynamical equations possess three types of attractor: (i) retrieval
attractors (a,m) = (0,%1); (ii) uniform attractors (a,m) = (£1,0); (iii) non-
retrieval attractors (a,m) = {0,0). The stability of these attractors are determined
by the eigenvalues of the matrix g, /8m, where g, (m ,m_) = f(m, ,m_)—
my = 0. For a stable attractor the two eigenvalues must both be negative. We
find that the retrieval attractors are always stable below the storage capacity and
the uniform attractors are stable for positive non-zero B. On the other hand the
non-retrieval attractor is a stable fixed point for a > o* = 0.21, and for B positive,
M < \/mf20r B < B* = 2.22. o" is half the corresponding value for unconstrained
networks [9], the difference arising from the weight sign constraints.

3.2. Saddle points and their stability

It is also interesting to consider the stability of saddle points which determine the
character of transient behaviour. Particulatly informative are the a and m saddle
points lying on the a and m axes. The a saddle point is located at {a,m) = (a*, 0},
where a* is the unstable fixed point of the equation

a" = erf (——5\/;—1—%—2)) . (3.0)

It merges with the non-retrieval attractor point when a* becomes zero for B > B”.
It turns into an unstable fixed point (or a repeller) at low storage levels when

exp[—a*?M?/2(1 - a
2
V2m(l—a*?)

) ] dAp(A)A > 1. (3.1)

The m saddle point is locatéd at (¢, m) = (0,m"), where m* is the unstable
fixed point of the equation

* __ I"IA ,/.\__c( m*A \ Fde Big A
m —j anpl iy jeri \m} . La)

-

It merges with the non-retrieval attractor point when m* becomes zero for o < ™.
It turns into a repeller at high weight sign bias when

exp[-m*2A%/2(1 — m*?))

V2r(1l —m=?)

The regions of stability of the fixed points and saddle points are shown in figure 1.

2MfdAp(A) >1. (3.3)
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Figure 1. Regions of stability of fixed points and saddle points, and phase diagram in
the space of storage level o and weight sign bias B. See section 4 for the names of
the phases. The retrieval and uniform attractors are slable in all regions, while the
non-retrieval attractor is only stable in region Ta. The a saddle point exists in regions
wR1 and Ta, but turns into a repeller in region wk2. The m saddle point exists in
regions wuUl and Ta, but turns into a repeller in region wuZ2.

R
10

0.0

NR T

Figure 2. The basin boundary and transient boundaries for ¢« = 0.3 and B = 0. In
figures 24, we have restricted the figures 1o the first quadrant (since the other quadrants
are symmetrically similar). The labels R, U and NR represent the retrieval, uniform and
non-retrieval fixed points respectively. The arrows on the diagrams show the direction of
movement in the parameter space. Basin boundaries are plotted in solid lines, attractor
lines in thin lines, ransient boundaries dm/dt = 0 in dashed lines, and da/d¢t =0
in dotted lines.

4, Basins of attraction and transient behaviour

The shape and location of the basin boundary lines may depend on whether we
are considering attractors for synchronous or asynchronous dynamics. However, we
have observed no significant difference between the two types of dynamics in the
cases of positive B we studied. In figures 2 and 3 we piot the basin boundaries for
asynchronous dynamics, Moreover, we have plotted the (unique) attractor lines which
emanate from a saddle point and converge to an attractor. All flow lines in the basin
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Figure 3. The basin boundary, attractor lines and transient boundaries for {a, B) = (a)
(0.15, 2.5); (b) (0.25, 3.0% () (0.15, 2.0 (d) (0.25, 2.5); (e} (0-15, 1.8); (£) (0.25, 2.0).
These are examples of regions DU, wu2, WR2, wul, wrl and TA in figure 1 respectively.
(The ordering in layout corresponds to the relative positions in figure 1.)
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Figure 4. Effects of changing o and B on the basin boundary between the retrieval
and uniform attractors in the regions of non-axial attraction. The segments of the basin
boundaries plotted here start from the axial-repeller and end at the non-axial saddle
point, Starting from the left, (a)B = 2.0 and & = 0.15,0.12,0.09; (53 = 2.5 and
a=10.20,0.18,0.15; (c)ao=0.25 and B = 4.0,3.5,3.0.

of attraction tend to approach one of these attractor lines on their flow towards the
attractor point,

We have also plotted boundaries of transient behaviour. The dashed and dotted
lines represent the curves dm/dt = 0 and da/dt = 0 respectively. In both syn-
chronous and asynchronous dynamics, they demarcate four types of transient states:
(i) retrieval transients—m* increases and a' decreases; (ii) non-retrieval transients—
both m* and o decrease; (iii) uniform transients—m' decreases and o' increases;
(iv) active transients—both m?* and a' increase. Normally, the behaviour near the
retrieval, non-retrieval and uniform attractor states (where they exist) are retrieval,
non-retrieval and uniform transients respectively. However, in the vicinity of their
basin boundaries, other transients are usually present.

There exist points of intersection of the basin boundaries and transient boundaries.
Since basin boundaries mect the ¢ and m axes at saddle points or repellers, the
conditions da /dt = 0 and dm/dt = 0 must be satisfied at the intersections. Thus
these meeting points also lie on the transient boundaries.

Furthermore, there are regions of the parameter space (namely regions DU, WU2
and WR2 in figure 1, see figures 3(a)—(c)) where the two boundaries of transience
dafdt = 0 and dm/dt = 0 meet. In these cases, their meeting point is another
saddle point lying off the axes of symmetry, and we have a confluence of the transient
and basin boundaries.

4.1. Zero weight bias

When B = 0 and a < " any state with a small (positive) macroscopic overlap with
the stored pattern will inevitably move towards the retrieval fixed point since this is
the onlv attractor nresent (the nnlv transients present are retrieval rmmmmq\

aaly ARiStenss LRI IS R LT I (SR CER i) 1100 ) ol Qb IR VAL Lialldiviall

For a > o a non- remeval attractor appears, as illustrated in figure 2. In the
neighbourhood of the retrieval and non-retrieval states respectively, retrieval and non-
retrieval transients are present. In addition, there exist regions of retrieval transients
outside the basin of the retrieval attractor, i.e. there is a small transient increase in m!
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before moving towards the non-retrieval state. The region of retricval transients may
be disconnected in two for higher values of « (figure 2), one in the neighbourhood
of the uniform fixed point, and the other in the vicinity of the remieval attractor.
Alternatively, it may be connected for lower a.

4.2. Basin encroaching and shrinking

For positive B the different regions of attractor and transient behaviour are illustrated
in figure 1, and the dynamical evolution of each region are shown in figures 3{a)—(f).
The transition between these different behaviours can be interpreted as the result of
competing attraction of the retrieval and uniform attractors.

In general, the attracting power of an attractor depends on two factors: the storage
level @ and weight bias B. Low « favours the retrieval attractor, since the aligning
fields of the stored pattern is strong, and high B favours the uniform attractor. When
an attractor is favoured, its basin of attraction widens at the expense of the others,
resulting in the shrinking, or even the disappearing, of the weaker attractors.

For high o and low B, both the retrieval and uniform attractors are not exceed-
ingly strong, allowing for the presence of the non-retrieval attractor. This corresponds
to the triple attractor region (Ta). For the particular example in figure 3(f), there are
regions of non-retrieval transients lying within the basin boundaries of the retrieval
and uniform attractors. States in these regions undergo an initial small movement
away from the attractor before entering the retrieval or uniform transient regions
surrounding the attractors. This shows that the non-retrieval attractor is sufficiently
strong, influencing not only the flow within its own basin, but also that in its neigh-
bouring basins.

For low a and Jow B, the retrieval attractor is favoured and encroaches on the
non-retrieval attractor. This corresponds to the wide retrieval region (WR1 and WR2),
where both the retrieval and uniform attractors are stable, but the retrieval attractor
has a wider basin of attraction, which includes the whole positive m axis and part of
the o axis (Figure 3(c, €)). Similarly, for high o and high B, the uniform attractor is
favoured in the wide uniform region (WUl and wu2}, as shown in figure 3(b, d).

For low o and high B, both the retrieval and uniform attractors are strong,
corresponding to the duopoly region (DU). As shown in figure 3{a), both the retrieval
and uniform attractors have wide basins of attraction along their respective axes.

4.3, Basin splitting

In regions WR1, wul and Ta, no repellers are present on the basin boundaries.
The axes of symmetry, which connect the saddle and attractor points, are therefore
attractor lines. The uniform and retrieval basins can then be considered as a single
valley. The active transient is absent, though the other three types of transients occur.
These regions can be described as regions of axtal attraction.

In regions WR2, Wu2 and DU, repellers are present on the basin boundaries.
Saddle points, and hence the attractor lines, are located off the axes of symmetry.
The repeller lies on an axis of symmetry, which can therefore can be considered as
a valley boundary separating two valleys. When all quadrants of the variable space
are taken into account, basins of attraction are further divided into valleys, each
associated with an attractor line. All transients are possible. These regions will be
called regions of non-axial attraction.
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We interpret the transition from axial to non-axial attraction, and the accompany-
ing splitting of the basins of attraction into valleys, as a result of the uneven attracting
power of the competing attractors in the state configuration space. Because of the
symmetry of the dynamical equation (2.18), the dynamical behaviour along the a axis
is independent of the aligning field distribution, and hence independent of o it is
entirely determined by the weight bias. Similarly, the dynamical behaviour along the

m axis is entirely independent of the weight bias, On the other hand, the dynamical
behaviour off the axes of symmetrvy denends on the attracting nower of both the

RAGYRIUD MEL AR GALS UL oy HIILUY LLpPLiUs LN AL allyabiing puwhd W DL AN

retrieval and uniform attractors.

In the wide retrieval region, for example, consider the transition from the single
valley regime (WR1) to the multi-valley one (WR2). For o < ", the retrieval attractor
is generally strong, whereas the uniform attractor is strongest along the a axis, since
the dynamics along this axis is independent of . When B increases, the uniform
basin expands along the o axis, pushing the saddle point to a lower value of a*.
However, in the neighbourhood of this point, the attracting power of the uniform
attractor rapidly weakens when one moves away from the axis. Thus for sufficiently
large B, the a saddle point turns into a repeller, accompanied by a saddle point
bifurcating from it.

Alternatively, this picture of competing attraction can be described in terms of
a landscape analogy. This is useful although strictly speaking, the flow cannot be
described as the gradient of a potential function, since it is not irrotational (ie.
Om/Ba # Oaf8m). If we associate a potential barrier with the basin boundary,
then the increasing strength of the retrieval attractor off the a axis tends to lower the
barrier at the non-axial region. When the potential at a non-axial point on the batrier
becomes lower than that at the e saddie point, the a saddle point turns into a local
maximum, while the saddle point shifts to a non-axial position. The axial attractor
line turns into a valley boundary, and the narrower uniform basin divides into two
valleys, whereas the wider retrieval basin divides into three.

Using similar arguments, the transition between wR! and WR2 can also be
achieved by decreasing o at constant B. Furthermore, the transition between wul
and wu2 is analogous, except that the roles played by the retrieval and uniform
attractors are reversed.

4.4. Basin wedging

There is still another competitive effect when an axial saddle point turns into a
repeller. Since the dynamical equations are symmetric with respect to the e and m
axes, the basin boundaries should also meet the axes at the same inclination on both
sides of the axes of symmetry. In particular, when the basin boundaries intersect the
axes of symmetry at a saddle point, they should be normal to each other. This is
because the only two flow directions that can pass through a saddle point lic along
the eigenvectors of the stability matrix, which are normal at this point of symmetry.

However, when the axial saddle point turns into a repeller, the basin boundary is
not necessarily normal to the axes of symmetry, since the dynamic flow can emanate
from the repeller in all directions. The angle of intersection depends on the relative
attracting powers of the neighbouring attractors sharing the basin boundary.

Figure 4 demonstrates the effects of varying o and B in the three regions of
non-axial attraction. For example, in the WR2 region in figure 4(a), the retrieval at-
tractor is increasingly favoured when o or B decreases. The basin boundary becomes
increasingly inclined in favour of the retrieval basin, squeezing the uniform attractor



2238 K'Y M Wong and C Campbell

into a narrow wedged shape. The behaviour in the WU2 region is analogous in fig-
ure 4(b), except that the role of the retrieval and uniform attractors are reversed. The
same explanation applies to the duopoly region in figure 4(c), in which the wedged
shape basin is the uniform basin for low B, but the retrieval basin for high B.

4.5. Negative weight bias

In contrast to the case of positive B, the behaviours of synchronous and asynchronous

Aatimen ora mista Aiffarant far masntiva B DTae cynchrannane nindatinsg wn cnn

upuau.us ale t.]uuc uuu:u;lu vl IIDEGLIVQ . 1'ul Byll\flllUllUub upuauus WL MO I.[l,dl.
if B— —B then f, and f_ in (2.18) are interchanged. Consequently the uniform
state {a,m) = (:i:l,O) will be a cyclic attractor of period 2 giving states of all 1's
and all —1's at each alternative time step. The approach to this attractor will invoive
oscillations about the m axis. The retrieval and non-retrieval attractors still exist
as in the case of positive weight bias B, but the approaches to attractors will also
involve oscillations about the m axis. Apart from this oscillatory behaviour the plots
for synchronous updating are identical to their positive B counterparts. Thus there
are no non-retrieval attractors for B £ —B* and o > o*.

For negative B and asynchronous updating the uniform attractors disappear. Thus
only the retrieval and non-retrieval attractors exist and the non-retrieval state is stable
even for B € —B*. Itis interesting to compare the dynamics of networks with weight
biases & B. The dynamical equations (2.6) imply that at the state (m,,m_),

g (=B) + my = m (B)+ m, (4.0)

which in turn implies that /(B) = mn(—B) and a(B) + a(—B) + 2a = 0. Hence
the boundaries of transience dm/ dt = 0 are identical for the two networks, whereas
the boundaries da/dt = 0 are in general different.

5. Gauge symmetry and dynamical thresholds

There is an important difference between the static storage and the dynamical retrieval
of patterns, namely the issue of gauge invariance. If we are merely interested in
whether a sign-constrained neural network stabilizes a pattern in one time step when
the correct pattern is presented, then it has been argued [9] that the storage capacity
of the network is the same for all combination of weight signs, provided that the
stored patterns are random and unbiased. This gauge invariance property is the
consequence of the following simple argument. If the weight sign of a synapse J;; is
flipped, the network would have the same storage capacity if the p pattern bits £ are
all flipped. Since £ are random and unbiased, £§ and —£} have the same probab1hty
of occurence in the original pattern ensemble. Hencc the pattern-averaged SLorage
capacity is not modified by the flipping of weight signs.

In fact this perceptron storage property also extends to the case of biased patterns.
Suppose we consider the case of biased input patterns {.5“}, with mean activity a,
mapped onto output patterns, {{*}. Furthermore, suppose that the condition for the
stability of stored patterns is modified to (* 3, J,(€F —a)/VC > «, then although
the microscopic gauge invariant argument for unblased patterns does not hold, there
is nevertheless a statistical gauge invariant argument which ensures that the storage
capacity 18 mdependent of the weight bias. This is because when we flip the sign of
a weight J, the network would have the same storage capacity if the p quantities
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(& — o) also flip their signs. Now although —(£¥ — ) does not have the same
microsopic distribution of (£} — a), they nevertheless have the same statistical mean
(ie. zero) and variance (i.e. 1 — a?), which are the only significant quantities in
determining the extent of pattern interference in the thermodynamic limit.

The microscopic gauge invariance argument continues to hold for the dynamics
of unbiased patterns provided that the initial input state is restricted to unbiased
configurations, i.e. ¢* = 0. This is evident from the dynamical equation (2.6), which
is independent of the weight bias M for a' = 0. However, it does not hold when
the input states are biased. Indeed, our study has demonstrated that the attractor
structure and phase diagrams depend on the weight sign bias. We have seen that the
uniform attractor becomes significant for a very small fractional weight sign imbalance,
of the order O(C-1/2). For fractional weight sign imbalances of the order O(1),
the retrieval basin possesses a repeller on the axis, and has an extremely thin wedged
shape. Variations with a small activity away from the m axis rapidly drive the system
towards the uniform attractors — potentially a very undesirable feature of the network.

In fact, it is possible to compensate for this instability against fluctuations in the
activity by introducing a dynamical threshold in the updating function of each neuron.
This dynamical threshold restrains the averaged activity so that it does not approach
one of the uniform states. [t also restores a statistical gauge invariance similar to that
for the static storage of biased patterns outlined above. Dynamical thresholds have
also been proposed in optical neural networks [3].

The dynamical threshold can be introduced by subtracting Aa® from each S} in
the updating function, i.e.

: 1 ¢ ¢
St =gpn [—\/_E_ zj:J,-J-(Sj - Aa )] (5.0)

where o' = N~! 37, S} is the instantancous activity of the network and the quantity

Aat 3. g /V/C can be considered as the dynamical threshold. As a consequence
the retrieval functions (2.18) are now madified to

(.1)

mA:l:aM(l—)\))

fila,m) =jdAp(A)erf(\/2(1—m2—a2)

By putting A = 1, we see that the network dynamics becomes independent of
M, or the weight bias B, restoring the statistical gauge invariance to the network
dynamics. The uniform attractors are entirely eliminated {(and the dynamics becomes
similar to that outlined in section 4.1).

In general, for an arbitrary value of A, the dynamically thresholded network
has an effective weight bias of M(1 — A). Thus by suitably adjusting the value of
A, it is possible to shift the attractor structure of the network to different regions
of behaviour in figure 1 for constant «. For example, if the network initially lies in
region Ta, it is possible to suppress the spurious non-retrieval attractor by introducing
a sufficiently negative A, so that only retrieval and uniform attractors are present, This
enables Shinomoto’s cognitive feature [6], which was mentioned in section 1, to be
implemented for a much wider range of the weight sign bias.
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6. Discussion

We have found three types of attractors in dilute networks with a bias in the weight-
signs: retrieval, non-retrieval and uniform attractors. The properties of these at-
tractors, their basin sizes and stability are the competitive result of two macroscopic
factors: the storage ratio o and weight bias B. This results in the six regions of
attractor and transient behaviours in figure 1, which can be described in terms of
basin encroaching, shrinking, splitting and wedging as the attractors compete with
each other.

Interestingly, this picture of competitive attractor behaviour is also present in the
retrieval of two patterns each having variable aligning field strengths [13]. In fact if
we consider, in our case, the uniform state as one of stored patterns with {;‘ = +1,

then M = 3. J,; /V/C is exactly the aligning field for this uniform pattern. The
only difference between our network and the two-pattern network in [13] is that the
aligning field distribution for the stored pattern is not a delta function; otherwise the
two systems have identical dynamical equations. Furthermore, their flow diagrams
(figure 1(a)—(d) in [13]) are similar to figures 3(a), (c), (e} and (f) respectively, and
their phase diagram (figure 3 in [13]) corresponds to figure 1 if we take into account
the fact that o decreases with increasing average aligning field.

Another example of competitive effects is present in the model with an asymmetric
Hebbian rule [14]. There the attracting power of the attractors depend on the storage
level o and the threshold H (instead of the weight bias), and the basins of attraction
can be adjusted by tuning these two parameters.

More pgenerally, we believe that similar competitive effects are present in any
dynamical systems with multiple attractors. In particular, models of attractor neural
network associate each stored pattern with an attractor. Consequently, phases of
competitive attractor behaviours can be mapped out as the relative strengths of the
attractors are varied,

We have also found interesting transient behaviour, The normal behaviour within
the retrieval and uniform basins are retrieval and uniform transicnts respectively.
However, there exist non-retrieval transiénts in the vicinity of the basin boundary
alongside this normal behaviour, i.€. the m or a component of the network state first
moves away from the fixed point before eventually approaching it. This effect, which
is absent in the dynamics of network states with one component, is most marked
for states off the axes of symmetry. It is observed in all regions of figure 1 except
part of the triple attractor region. In the triple attractor region, the interplay of the
attractors result in a rich transient behaviour, which will be reported elsewhere [18].
When the two attractor strengths are stongly imbalanced, active transients (i.e. the a
component increasing) also exist in the vicinity of the basin boundary in the regions
of non-axial attraction.

These transient behaviours are again manifestations of the competition between
the attractors. Strong attractors are not only able to capture large regions of network
state within their own basin, but they are also able to modify the transient evolution
of network states in their neighbouring basins.

Our model can be easily generalized to the case of perceptron networks with a
fraction of sign-constrained weights [19,20]. If s is the fraction of weights which are
unconstrained, we arrive at the same retrieval functions (2.18), except that o and M
have to be replaced by o /(1 + s) and M(1 — s)/+/1 + s respectively. The attractor
structure can therefore be obtained by an appropriate rescaling of the axes in figure 1.
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The presence of unconstrained weights reduces the aligning field of the uniform state.
In the limit s — 1, the network becomes completely unconstrained, and the uniform
attractor becomes destabilized.

Finally, we comment on the biological relevance of neural network models with
sign-constrained weights. There appears to be no evidence that individual synapses
can switch from one type to the other on any timescale. The subcase J;;g; 2 0
corresponds to the same sign constraint for all the efferent synapses belonging to a
reuron (i.e. each neuron would be solely excitatory or inhibitory in its effect). This
functional unity of individual neurons is similar to Dale’s rule [2). For many neuronal
cells such a functional unity appears to be correct. A specific neurotransmitter is
released (either excitatory, such as glutamate or aspartate, or inhibitory such as
GABA) with a common effect on all follower cells. However, there are exceptions to
this picture. Firstly, neuronal cells exist which release multiple transmitters (among
invertebrates such neurons have been identified in Aplysia and there is also some
evidence for these neurons among vertebrates). Secondly, the sign of a synapse is
not determined by the transmitter but by the properties of the receptors on the
postsynaptic cell [20] and there exist neurotransmitters which could have different
excitatory or inhibitory effects on the poswtsynaptic cells. Consequently, though a
functional unity (either excitatory or inhibitory) is a common feature of most neurons
it is not true in complete generality.

Nevertheless, our study of the dynamical properties of sign-constrained networks
is still biologically relevant in a number of ways. Our analysis only assumes that the
synapses feeding a neuron obey a particular distribution of weight signs. The results
are independent of any weight sign dependence of the transmitting neurons. Besides,
inhibitory interneurons [22] play an important role in the brain and their effects on
other neurons could be modelled as alterations of thresholds. It is possible that
this mechanism could be related to the dynamical thresholds we have discussed in
section 5. Finally, the attractor structures we have found are still present in a rescaled
phase diagram even if the synapses are only partially sign-constrained, showing that
such features are quite universal.
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